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Lp-dual three mixed quermassintegrals

Chang-Jian Zhao and Mihály Bencze

Abstract

In the paper, the concept of Lp-dual three-mixed quermassintegrals
is introduced. The formula for the Lp-dual three-mixed quermassin-
tegrals with respect to the p-radial addition is proved. Inequalities of
Lp-Minkowski, and Brunn-Minkowski type for the Lp-dual three-mixed
quermassintegrals are established. The new Lp-Minkowski inequality is
obtained that generalize a family of Minkowski type inequalities. The
Lp-Brunn-Minkowski inequality is used to obtain a series of Brunn-
Minkowski type inequalities.

1 Introduction

The classical Lp-dual Minkowski inequality can be stated as follows (see [4]):
If K and L are star bodies and 0 < p ≤ n, then

Ṽp(K,L)n ≤ V (K)n−pV (L)p, (1.1)

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n.

Here, V (K) denotes the (n-dimensional) Lebesgue measure of a body K

and call the volume of K. The p-dual mixed volume Ṽp(K,L), for p 6= 0,
defined by

Ṽp(K,L) =
1

n

∫
Sn−1

ρ(K,u)n−pρ(L, u)pdS(u), (1.2)
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where, the letter u for unit vectors, the surface of B is Sn−1 and the letter B
is reserved for the unit ball centered at the origin, and ρ(K, ·): Sn−1 → [0,∞),
denotes the radial function of star body K, defined by (see e.g. [2] and [7])

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}.

If ρ(K, ·) is positive and continuous, K will be called a star body. Let Sn

denote the set of star bodies in Rn. For any p 6= 0, the p-radial addition
K+̃pL defined by (see [3])

ρ(K+̃pL, u)p = ρ(K,u)p + ρ(L, u)p, (1.3)

for K,L ∈ Sn. The Brunn-Minkowski inequality for the p-radial addition
states that (see [3]): If K,L ∈ Sn and 0 < p ≤ n, then

V (K+̃pL)p/n ≤ V (K)p/n + V (L)p/n, (1.4)

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n. The operation of the p-radial addition and Lp-dual Minkowski,
Brunn-Minkwski inequalities are the basic concept and inequalities in the Lp-
dual Brunn-Minkowski theory.

In the paper, we give a generalization of the concept of the p-dual mixed
volume. The Lp-dual three-mixed quermassintegrals is introduced. Let
K,L,Q ∈ Sn, 0 ≤ i < n and p 6= 0, the Lp-dual three-mixed quermassin-

tegrals of star bodies K, L and Q, denoted by W̃p,i(K,L,Q), defined by

W̃p,i(K,L,Q) =
1

n

∫
Sn−1

ρ(K,u)n−i−1−pρ(L, u)pρ(Q, u)dS(u). (1.5)

When Q = K, the Lp-dual three-mixed quermassintegrals W̃p,i(K,L,Q) =

W̃p,i(K,L,K) becomes the p-dual mixed quermassintegrals W̃p,i(K,L).

When K = L, the Lp-dual three-mixed quermassintegrals W̃p,i(K,L,Q) =

W̃p,i(K,K,Q) becomes the usual mixed quermassintegrals W̃i(K,Q). When

K = L = Q, the Lp-dual three-mixed quermassintegrals W̃p,i(K,L,Q) =

W̃p,i(K,K,K) becomes the usual dual quermassintegrals W̃i(K).
The formula for the Lp-dual three-mixed quermassintegrals with respect

to the p-radial addition is proved (see Section 3). The Minkowski inequality
for the Lp-dual three-mixed quermassintegrals is obtained. If K,L,Q ∈ Sn,
0 ≤ i < n and 0 < p ≤ n, then

W̃p,i(K,L,Q)n−i ≤ W̃i(K)n−i−p−1W̃i(L)pW̃i(Q), (1.6)

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n.
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The new Minkowski inequality is obtained that generalize some Minkowski
type inequalities. Taking Q = K in (1.6), this becomes the following Lp-
Minkowski inequality for p-dual quermassintegrals. If K,L ∈ Sn, 0 < p ≤ n
and 0 ≤ i < n, then

W̃p,i(K,L)n−i ≤ W̃i(K)n−i−pW̃i(L)p,

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n. Taking K = L in (1.6), (1.6) becomes the following Minkowski
inequality for dual quermassintegrals. If K,L ∈ Sn and 0 ≤ i < n, then

W̃i(K,L)n−i ≤ W̃i(K)n−i−1W̃i(L),

with equality if and only if K and L are dilates. Taking i = 0 and Q = K in
(1.6), (1.6) becomes the following Lp-Minkowski inequsality. If K,L ∈ Sn and
0 < p ≤ n, then

Ṽp(K,L)n ≤ V (K)n−pV (L)p,

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n. This is just the classical Lp-Minkowski inequality (1.1).

The Brunn-Minkowski inequality for the Lp-dual three-mixed quermassin-
tegrals with respect to the p-radial addition is obtained. If K,L,M,Q ∈ Sn,
0 ≤ i < n− 1 and 0 < p ≤ n, then

W̃p,i(Q,K+̃pL,M) ≤W̃i(Q)(n−i−p−1)/(n−i)(
W̃i(K)p/(n−i) + W̃i(L)p/(n−i)

)
W̃i(M)1/(n−i), (1.7)

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n.

The new Brunn-Minkowski inequality is used to obtain a family of Brunn-
Minkowski type inequalities. Taking Q = M = K+̃pL in (1.7), (1.7) becomes
the following Lp-Brunn-Minkowski inequality for dual quermassintegrals. If
K,L ∈ Sn, 0 ≤ i < n− 1 and 0 < p ≤ n, then

W̃i(K+̃pL)p/(n−i) ≤ W̃i(K)p/(n−i) + W̃i(L)p/(n−i),

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n. Taking p = 1 and Q = M = K+̃pL in (1.7), (1.7) becomes the
following Brunn-Minkowski inequality for dual quermassintegrals. IfK,L ∈ Sn

and 0 ≤ i < n− 1, then

W̃i(K+̃L)1/(n−i) ≤ W̃i(K)1/(n−i) + W̃i(L)1/(n−i),

with equality if and only if K and L are dilates.
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Taking i = 0 and Q = M = K+̃pL in (1.7), (1.7) becomes the following
Lp-Brunn-Minkowdski inequality for volumes. If K,L ∈ Sn and 0 < p ≤ n,
then

V (K+̃pL)p/n ≤ V (K)p/n + V (L)p/n, (1.8)

with equality if and only if K and L are dilates.
The inequality is reversed for p < 0 or p > n. This is just classical Lp-

Brunn-Minkowski type inequality (1.4).

2 Preliminaries

The setting for this paper is n-dimensional Euclidean space Rn. Associated
with a compact subset K of Rn, which is star-shaped with respect to the origin
and contains the origin, its radial function is ρ(K, ·) : Sn−1 → [0,∞), defined
by

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}.

Let δ̃ denote the radial Hausdorff metric, as follows, if K,L ∈ Sn, then (see e.
g. [1])

δ̃(K,L) = |ρ(K,u)− ρ(L, u)|∞.

2.1 Dual mixed volumes

The radial Minkowski linear combination, λ1K1+̃ · · · +̃λrKr, defined by (see
[5])

λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃λrxr : xi ∈ Ki, i = 1, . . . , r},

for K1, . . . ,Kr ∈ Sn and λ1, . . . , λr ∈ R. It has the following important
property:

ρ(λK+̃µL, ·) = λρ(K, ·) + µρ(L, ·),

for K,L ∈ Sn and λ, µ ≥ 0.
If Ki ∈ Sn (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are nonnegative real

numbers, then of fundamental importance is the fact that the dual volume of
λ1K1+̃ · · · +̃λrKr is a homogeneous polynomial in the λi given by (see [5])

V (λ1K1+̃ · · · +̃λrKr) =
∑

i1,...,in

λi1 . . . λin Ṽi1...in , (2.1)

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not
exceeding r. The coefficient Vi1...in depends only on the bodies Ki1 , . . . ,Kin

and is uniquely determined by (2.1), it is called the dual mixed volume of

Ki1 , . . . ,Kin , and is written as Ṽ (Ki1 , . . . ,Kin). Let K1 = . . . = Kn−i =
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K and Kn−i+1 = . . . = Kn = L, then the mixed volume Ṽ (K1 . . .Kn) is

written as Ṽi(K,L). If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = B,

then the mixed volumes Vi(K,B) is written as W̃i(K) and is called the dual
quermassintegral of star body K. Let K1 = . . . = Kn−i−1 = K, Kn−i = . . . =

Kn−1 = B and Kn = L, then the dual mixed volume Ṽ (K, . . . ,K︸ ︷︷ ︸
n−1−i

, B, . . . , B︸ ︷︷ ︸
i

, L)

is written as W̃i(K,L) and is called the dual mixed quermassintegral of K and
L.

The dual quermassintegral of star body K, defined as an integral by (see
[6]): If K ∈ Sn and 0 ≤ i < n, then

W̃i(K) =
1

n

∫
Sn−1

ρ(K,u)n−idS(u). (2.2)

2.2 p-radial addition

For any p 6= 0, the p-radial addition K+̃pL defined by (see [3])

ρ(K+̃pL, x)p = ρ(K,x)p + ρ(L, x)p, (2.3)

for x ∈ Rn and K,L ∈ Sn. The following result follows immediately form
(2.3).

p

n− i
lim
ε→0+

W̃i(K+̃pε · L)− W̃i(L)

ε
=

1

n

∫
Sn−1

ρ(K.u)n−i−pρ(L.u)pdS(u).

Let K,L ∈ Sn, p 6= 0 and 0 ≤ i < n, the p-dual mixed quermassintegral of
star K and L, W̃p,i(K,L), defined by

W̃p,i(K,L) =
1

n

∫
Sn−1

ρ(K,u)n−i−pρ(L, u)pdS(u). (2.4)

Obviously, when p = 1, the p-dual mixed quermassintegral W̃p,i(K,L) becomes

the dual mixed quermassintegrals of star bodies K and L W̃i(K,L). When

i = 0, the p-dual mixed quermassintegral W̃p,i(K,L) becomes the well-known

p-dual mixed volume Ṽp(K,L).
This integral representation (2.4), together with the Hölder inequality, im-

mediately gives that the following Minkowski inequality for p-dual quermass-
integras: If K,L ∈ Sn, 0 < p ≤ n and 0 ≤ i < n, then

W̃p,i(K,L)n−i ≤ W̃i(K)n−i−pW̃i(L)p, (2.5)

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n.
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It is easily seen that the p-dual mixed quermassintegral is linear with re-
spect to the p-radial addition and together with inequality (2.5), show that
the following Brunn-Minkowski inequality for p-radial addition: If K,L ∈ Sn,
0 ≤ i < n and 0 < p ≤ n, then

W̃i(K+̃pL)p/(n−i) ≤ W̃i(K)p/(n−i) + W̃i(L)p/(n−i), (2.6)

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n.

The operation of the p-radial addition and Lp-dual Minkowski, Brunn-
Minkwski inequalities are the basic concept and inequalities in the Lp-dual
Brunn-Minkowski theory. The latest information and important results of
this theory can be referred to [8], [9], [10], [11] and [12] and the references
therein.

3 Lp-dual three mixed quermassintegrals with respect to
p-radial addition

In order to define the Lp-dual three-mixed quermassintegral with respect to
p-radial addition, we need the following lemmas.

Lemma 3.1 ([6]) If f0, f1 and f2 are (strictly) positive continuous func-
tions defined on Sn−1 and α1, α2 are positive constants the sum of whose
reciprocals is unity, then∫

Sn−1

f0(u)f1(u)f2(u)dS(u) ≤
(∫

Sn−1

f0(u)fα1
1 (u)dS(u)

)1/α1

(∫
Sn−1

f0(u)fα2
2 (u)dS(u)

)1/α2

, (3.1)

with equality if and only if there exist positive constants λ1 and λ2 such that
λ1f

α1
1 = λ2f

α2
2 for all u ∈ Sn−1.

Lemma 3.2 Let p 6= 0, 0 ≤ i < n and ε > 0. If K,L ∈ Sn, then

lim
ε→0+

ρ(K+̃pε · L, u)n−i−1 − ρ(K,u)n−i−1

ε
=
n− i− 1

p
ρ(K,u)n−i−p−1ρ(L, u)p.

(3.2)
Proof From (2.3) and in view of the L’Hôpital’s rule, we obtain

lim
ε→0+

ρ(K+̃pε · L, u)n−i−1 − ρ(K,u)n−i−1

ε
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= lim
ε→0+

(ρ(K,u)p + ερ(L, u)p)
(n−i−1)/p − ρ(K,u)n−i−1

ε

=
n− i− 1

p
lim
ε→0+

(ρ(K,u)p + ερ(L, u)p)
(n−i−1−p)/p

ρ(L, u)p

=
n− i− 1

p
ρ(K,u)n−i−1−pρ(L, u)p.

�
Lemma 3.3 Let p 6= 0, 0 ≤ i < n and ε > 0. If K,L,Q ∈ Sn, then

p

n− i− 1
lim
ε→0+

W̃i(K+̃pε · L,Q)− W̃i(K,Q)

ε

=
1

n

∫
Sn−1

ρ(K,u)n−i−1−pρ(L, u)pρ(Q, u)dS(u). (3.3)

Proof This follows immediately from Lemma 3.2 and (2.2). �
Definition 3.4 (The Lp-dual three-mixed quermassintegrals) Let K,L ∈

Sn, 0 ≤ i < n and p 6= 0, the Lp-dual three-mixed quermassintegrals of star

bodies K, L and Q, denoted by W̃p,i(K,L,Q), defined by

W̃p,i(K,L,Q) =
1

n

∫
Sn−1

ρ(K,u)n−i−1−pρ(L, u)pρ(Q, u)dS(u). (3.4)

WhenK = L = Q, the Lp-dual three-mixed quermassintegrals W̃p,i(K,L,Q)

becomes the usual dual quermassintegrals W̃i(K). When p = 1, the Lp-dual

three-mixed quermassintegrals W̃p,i(K,L,Q) is written as W̃i(K,L,Q) and call
it dual three-mixed quermassintegrals of K, L and Q. When i = 0, the Lp-

dual three-mixed quermassintegrals W̃p,i(K,L,Q) becomes a new three-mixed

volume, denoted by Ṽp(K,L,Q), and call it Lp-three dual mixed volume of K,

L and Q. When p = 1, Ṽp(K,L,Q) becomes a new three-dual mixed volume,

denoted by Ṽ (K,L,Q), and call it three dual mixed volume of K, L and Q.
Lemma 3.5 If K,L,Q ∈ Sn, 0 ≤ i < n and 0 < p ≤ n, then

W̃p,i(K,L,Q)n−i−1 ≤ W̃i(K,Q)n−i−p−1W̃i(L,Q)p, (3.5)

with equality if and only if K and L are dilates.
The inequality is reversed for p < 0 or p < n.
Proof This follows immediately from (3.4) and Lemma 3.1. �
Theorem 3.6 (The Minkowski inequality for p-dual three mixed quer-

massintegrals) If K,L,Q ∈ Sn, 0 ≤ i < n and 0 < p ≤ n, then

W̃p,i(K,L,Q)n−i ≤ W̃i(K)n−i−p−1W̃i(L)pW̃i(Q), (3.6)
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with equality if and only if K and L are dilates.
The inequality is reversed for p < 0 or p > n.
Proof This follows immediately from Lemma 3.5 and inequality (2.5). �
Corollary 3.7 (The Minkowski inequality for dual three-mixed quermass-

integrals) If K,L,Q ∈ Sn and 0 ≤ i < n, then

W̃i(K,L,Q)n−i ≤ W̃i(K)n−i−2W̃i(L)W̃i(Q), (3.7)

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.6 with p = 1. �
Corollary 3.8 (The Lp-Minkowski inequality for Lp-dual three mixed

volumes) If K,L,Q ∈ Sn, and 0 < p ≤ n, then

Ṽp(K,L,Q)n ≤ V (K)n−p−1V (L)pV (Q), (3.8)

with equality if and only if K and L are dilates. The inequality is reversed for
p < 0 or p > n.

Proof This follows immediately from Theorem 3.6 with i = 0. �
Corollary 3.9 (The Minkowski inequality for dual three mixed volumes)

If K,L,Q ∈ Sn, then

Ṽ (K,L,Q)n ≤ V (K)n−2V (L)V (Q), (3.9)

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.6 with p = 1 and i = 0.�
Corollary 3.10 If K,L,Q ∈ Sn, 0 ≤ i < n, then

W̃n,i(K,L,Q)n−iW̃i(K)i+1 ≤ W̃i(L)nW̃i(Q), (3.10)

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.6 with p = n. �
Theorem 3.11 (The Lp-Brunn-Minkowski inequality for the p-dual three

mixed quermassintegrals) If K,L,M,Q ∈ Sn, 0 ≤ i < n − 1 and 0 < p ≤ n,
then

W̃p,i(Q,K+̃pL,M)

≤ W̃i(Q)(n−i−p−1)/(n−i)
(
W̃i(K)p/(n−i) + W̃i(L)p/(n−i)

)
W̃i(M)1/(n−i), (3.11)

with equality if and only if K and L are dilates.
The inequality is reversed for p < 0 or p > n.
Proof From (2.3) and (3.4), it is easily seen that the p-dual three-mixed

quermassintegral is linear with respect to the p-radial addition and together
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with inequality (3.6) show that for 0 < p ≤ n

W̃p,i(Q,K+̃pL,M) = W̃p,i(Q,K,M) + W̃p,i(Q,L,M)

≤ W̃i(Q)(n−i−p−1)/(n−i)W̃i(K)p/(n−i)W̃i(M)1/(n−i)

+ W̃i(Q)(n−i−p−1)/(n−i)W̃i(L)p/(n−i)W̃i(M)1/(n−i)

=
(
W̃i(K)

p/(n−i)

+ W̃i(L)
p/(n−i)

)
× W̃i(Q)(n−i−p−1)/(n−i)W̃i(M)1/(n−i). (3.12)

From the equality condition of (3.6), the equality in (3.12) holds if and only
if K and L are dilates of Q, this yields that the equality in (3.12) holds if and
only if K and L are dilates. �

Corollary 3.12 (The Brunn-Minkowski inequality for dual three-mixed
quermassintegrals) If K,L,M,Q ∈ Sn and 0 ≤ i < n− 1, then

W̃i(Q,K+̃L,M) ≤(
W̃i(K)1/(n−i) + W̃i(L)1/(n−i)

)
W̃i(Q)(n−i−2)/(n−i)W̃i(M)1/(n−i), (3.13)

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.11 with p = 1. �
Corollary 3.13 (The Lp-Brunn-Minkowski inequality for p-dual three

mixed volumes) If K,L,M,Q ∈ Sn and 0 < p ≤ n, then

Ṽp(Q,K+̃pL,M) ≤ V (Q)(n−p−1)/n
(
V (K)p/n + V (L)p/n

)
V (M)1/n, (3.14)

with equality if and only if K and L are dilates.
The inequality is reversed for p < 0 or p > n.
Proof This follows immediately from Theorem 3.11 with i = 0. �
Corollary 3.14 (The Brunn-Minkowski inequality for dual three mixed

volumes) If K,L,M,Q ∈ Sn, then

Ṽ (Q,K+̃L,M) ≤ V (Q)(n−2)/n
(
V (K)1/n + V (L)1/n

)
V (M)1/n, (3.15)

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.11 with i = 0 and p = 1.

�

4 Conclusions

It is well known that the classical concept of mixed quermassintegrals of con-
vex bodies generally refers to the mixing of two convex bodies. By means
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of variational technique, a new concept of mixed quermassintegrals of three
convex bodies is proposed for the first time in Lp-space, which generalized
the classical concept of two-mixed quermassintegrals of convex bodies. Fur-
ther, the Minkowski inequality, and Brunn-Minkowki inequality for the three-
mixed quermassintegrals are established, respectively. Therefore, a series of
Minkowski type, and Brunn-Minkowski type inequalities are derived.
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