L_{p}-dual three mixed quermassintegrals

Chang-Jian Zhao and Mihály Bencze

Abstract

In the paper, the concept of L_{p}-dual three-mixed quermassintegrals is introduced. The formula for the L_{p}-dual three-mixed quermassintegrals with respect to the p-radial addition is proved. Inequalities of L_{p}-Minkowski, and Brunn-Minkowski type for the L_{p}-dual three-mixed quermassintegrals are established. The new L_{p}-Minkowski inequality is obtained that generalize a family of Minkowski type inequalities. The L_{p}-Brunn-Minkowski inequality is used to obtain a series of BrunnMinkowski type inequalities.

1 Introduction

The classical L_{p}-dual Minkowski inequality can be stated as follows (see [4]):
If K and L are star bodies and $0<p \leq n$, then

$$
\begin{equation*}
\widetilde{V}_{p}(K, L)^{n} \leq V(K)^{n-p} V(L)^{p} \tag{1.1}
\end{equation*}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$.

Here, $V(K)$ denotes the (n-dimensional) Lebesgue measure of a body K and call the volume of K. The p-dual mixed volume $\widetilde{V}_{p}(K, L)$, for $p \neq 0$, defined by

$$
\begin{equation*}
\widetilde{V}_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-p} \rho(L, u)^{p} d S(u), \tag{1.2}
\end{equation*}
$$

[^0]where, the letter u for unit vectors, the surface of B is S^{n-1} and the letter B is reserved for the unit ball centered at the origin, and $\rho(K, \cdot): S^{n-1} \rightarrow[0, \infty)$, denotes the radial function of star body K, defined by (see e.g. [2] and [7])
$$
\rho(K, u)=\max \{\lambda \geq 0: \lambda u \in K\} .
$$

If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Let \mathcal{S}^{n} denote the set of star bodies in \mathbb{R}^{n}. For any $p \neq 0$, the p-radial addition $K \widetilde{+}_{p} L$ defined by (see [3])

$$
\begin{equation*}
\rho\left(K \widetilde{+}_{p} L, u\right)^{p}=\rho(K, u)^{p}+\rho(L, u)^{p} \tag{1.3}
\end{equation*}
$$

for $K, L \in \mathcal{S}^{n}$. The Brunn-Minkowski inequality for the p-radial addition states that (see [3]): If $K, L \in \mathcal{S}^{n}$ and $0<p \leq n$, then

$$
\begin{equation*}
V\left(K \widetilde{+}_{p} L\right)^{p / n} \leq V(K)^{p / n}+V(L)^{p / n} \tag{1.4}
\end{equation*}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$. The operation of the p-radial addition and L_{p}-dual Minkowski, Brunn-Minkwski inequalities are the basic concept and inequalities in the $L_{p^{-}}$ dual Brunn-Minkowski theory.

In the paper, we give a generalization of the concept of the p-dual mixed volume. The L_{p}-dual three-mixed quermassintegrals is introduced. Let $K, L, Q \in \mathcal{S}^{n}, 0 \leq i<n$ and $p \neq 0$, the L_{p}-dual three-mixed quermassintegrals of star bodies K, L and Q, denoted by $\widetilde{W}_{p, i}(K, L, Q)$, defined by

$$
\begin{equation*}
\widetilde{W}_{p, i}(K, L, Q)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i-1-p} \rho(L, u)^{p} \rho(Q, u) d S(u) . \tag{1.5}
\end{equation*}
$$

When $Q=K$, the L_{p}-dual three-mixed quermassintegrals $\widetilde{W}_{p, i}(K, L, Q)=$ $\widetilde{W}_{p, i}(K, L, K)$ becomes the p-dual mixed quermassintegrals $\widetilde{W}_{p, i}(K, L)$.

When $K=L$, the L_{p}-dual three-mixed quermassintegrals $\widetilde{W}_{p, i}(K, L, Q)=$ $\widetilde{W}_{p, i}(K, K, Q)$ becomes the usual mixed quermassintegrals $\widetilde{W}_{i}(K, Q)$. When $K=L=Q$, the L_{p}-dual three-mixed quermassintegrals $\widetilde{W}_{p, i}(K, L, Q)=$ $\widetilde{W}_{p, i}(K, K, K)$ becomes the usual dual quermassintegrals $\widetilde{W}_{i}(K)$.

The formula for the L_{p}-dual three-mixed quermassintegrals with respect to the p-radial addition is proved (see Section 3). The Minkowski inequality for the L_{p}-dual three-mixed quermassintegrals is obtained. If $K, L, Q \in \mathfrak{S}^{n}$, $0 \leq i<n$ and $0<p \leq n$, then

$$
\begin{equation*}
\widetilde{W}_{p, i}(K, L, Q)^{n-i} \leq \widetilde{W}_{i}(K)^{n-i-p-1} \widetilde{W}_{i}(L)^{p} \widetilde{W}_{i}(Q) \tag{1.6}
\end{equation*}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$.

The new Minkowski inequality is obtained that generalize some Minkowski type inequalities. Taking $Q=K$ in (1.6), this becomes the following $L_{p^{-}}$ Minkowski inequality for p-dual quermassintegrals. If $K, L \in \mathcal{S}^{n}, 0<p \leq n$ and $0 \leq i<n$, then

$$
\widetilde{W}_{p, i}(K, L)^{n-i} \leq \widetilde{W}_{i}(K)^{n-i-p} \widetilde{W}_{i}(L)^{p}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$. Taking $K=L$ in (1.6), (1.6) becomes the following Minkowski inequality for dual quermassintegrals. If $K, L \in \mathcal{S}^{n}$ and $0 \leq i<n$, then

$$
\widetilde{W}_{i}(K, L)^{n-i} \leq \widetilde{W}_{i}(K)^{n-i-1} \widetilde{W}_{i}(L)
$$

with equality if and only if K and L are dilates. Taking $i=0$ and $Q=K$ in (1.6), (1.6) becomes the following L_{p}-Minkowski inequsality. If $K, L \in \mathcal{S}^{n}$ and $0<p \leq n$, then

$$
\tilde{V}_{p}(K, L)^{n} \leq V(K)^{n-p} V(L)^{p}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$. This is just the classical L_{p}-Minkowski inequality (1.1).

The Brunn-Minkowski inequality for the L_{p}-dual three-mixed quermassintegrals with respect to the p-radial addition is obtained. If $K, L, M, Q \in \mathcal{S}^{n}$, $0 \leq i<n-1$ and $0<p \leq n$, then

$$
\begin{align*}
\widetilde{W}_{p, i}\left(Q, K \widetilde{+}_{p} L, M\right) \leq & \widetilde{W}_{i}(Q)^{(n-i-p-1) /(n-i)} \\
& \left(\widetilde{W}_{i}(K)^{p /(n-i)}+\widetilde{W}_{i}(L)^{p /(n-i)}\right) \widetilde{W}_{i}(M)^{1 /(n-i)} \tag{1.7}
\end{align*}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$.

The new Brunn-Minkowski inequality is used to obtain a family of BrunnMinkowski type inequalities. Taking $Q=M=K \widetilde{+_{p}} L$ in (1.7), (1.7) becomes the following L_{p}-Brunn-Minkowski inequality for dual quermassintegrals. If $K, L \in \mathcal{S}^{n}, 0 \leq i<n-1$ and $0<p \leq n$, then

$$
\widetilde{W}_{i}\left(K \widetilde{+}_{p} L\right)^{p /(n-i)} \leq \widetilde{W}_{i}(K)^{p /(n-i)}+\widetilde{W}_{i}(L)^{p /(n-i)}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$. Taking $p=1$ and $Q=M=K \widetilde{+}_{p} L$ in (1.7), (1.7) becomes the following Brunn-Minkowski inequality for dual quermassintegrals. If $K, L \in \mathcal{S}^{n}$ and $0 \leq i<n-1$, then

$$
\widetilde{W}_{i}(K \widetilde{+} L)^{1 /(n-i)} \leq \widetilde{W}_{i}(K)^{1 /(n-i)}+\widetilde{W}_{i}(L)^{1 /(n-i)},
$$

with equality if and only if K and L are dilates.

Taking $i=0$ and $Q=M=K \widetilde{+}{ }_{p} L$ in (1.7), (1.7) becomes the following L_{p}-Brunn-Minkowdski inequality for volumes. If $K, L \in \mathcal{S}^{n}$ and $0<p \leq n$, then

$$
\begin{equation*}
V\left(K \widetilde{+}_{p} L\right)^{p / n} \leq V(K)^{p / n}+V(L)^{p / n} \tag{1.8}
\end{equation*}
$$

with equality if and only if K and L are dilates.
The inequality is reversed for $p<0$ or $p>n$. This is just classical $L_{p^{-}}$ Brunn-Minkowski type inequality (1.4).

2 Preliminaries

The setting for this paper is n-dimensional Euclidean space \mathbb{R}^{n}. Associated with a compact subset K of \mathbb{R}^{n}, which is star-shaped with respect to the origin and contains the origin, its radial function is $\rho(K, \cdot): S^{n-1} \rightarrow[0, \infty)$, defined by

$$
\rho(K, u)=\max \{\lambda \geq 0: \lambda u \in K\} .
$$

Let $\tilde{\delta}$ denote the radial Hausdorff metric, as follows, if $K, L \in \mathcal{S}^{n}$, then (see e. g. [1])

$$
\tilde{\delta}(K, L)=|\rho(K, u)-\rho(L, u)|_{\infty} .
$$

2.1 Dual mixed volumes

The radial Minkowski linear combination, $\lambda_{1} K_{1} \widetilde{+} \cdots \widetilde{+} \lambda_{r} K_{r}$, defined by (see [5])

$$
\lambda_{1} K_{1} \widetilde{+} \cdots \widetilde{+} \lambda_{r} K_{r}=\left\{\lambda_{1} x_{1} \tilde{+} \cdots \tilde{+} \lambda_{r} x_{r}: x_{i} \in K_{i}, i=1, \ldots, r\right\}
$$

for $K_{1}, \ldots, K_{r} \in \mathcal{S}^{n}$ and $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}$. It has the following important property:

$$
\rho(\lambda K \widetilde{+} \mu L, \cdot)=\lambda \rho(K, \cdot)+\mu \rho(L, \cdot)
$$

for $K, L \in \mathcal{S}^{n}$ and $\lambda, \mu \geq 0$.
If $K_{i} \in \mathcal{S}^{n}(i=1,2, \ldots, r)$ and $\lambda_{i}(i=1,2, \ldots, r)$ are nonnegative real numbers, then of fundamental importance is the fact that the dual volume of $\lambda_{1} K_{1} \widetilde{+} \cdots \widetilde{+} \lambda_{r} K_{r}$ is a homogeneous polynomial in the λ_{i} given by (see [5])

$$
\begin{equation*}
V\left(\lambda_{1} K_{1} \tilde{+} \cdots \tilde{+} \lambda_{r} K_{r}\right)=\sum_{i_{1}, \ldots, i_{n}} \lambda_{i_{1}} \ldots \lambda_{i_{n}} \widetilde{V}_{i_{1} \ldots i_{n}} \tag{2.1}
\end{equation*}
$$

where the sum is taken over all n-tuples $\left(i_{1}, \ldots, i_{n}\right)$ of positive integers not exceeding r. The coefficient $V_{i_{1} \ldots i_{n}}$ depends only on the bodies $K_{i_{1}}, \ldots, K_{i_{n}}$ and is uniquely determined by (2.1), it is called the dual mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$, and is written as $\widetilde{V}\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$. Let $K_{1}=\ldots=K_{n-i}=$
K and $K_{n-i+1}=\ldots=K_{n}=L$, then the mixed volume $\widetilde{V}\left(K_{1} \ldots K_{n}\right)$ is written as $\widetilde{V}_{i}(K, L)$. If $K_{1}=\cdots=K_{n-i}=K, K_{n-i+1}=\cdots=K_{n}=B$, then the mixed volumes $V_{i}(K, B)$ is written as $\widetilde{W}_{i}(K)$ and is called the dual quermassintegral of star body K. Let $K_{1}=\ldots=K_{n-i-1}=K, K_{n-i}=\ldots=$ $K_{n-1}=B$ and $K_{n}=L$, then the dual mixed volume $\widetilde{V}(\underbrace{K, \ldots, K}_{n-1-i}, \underbrace{B, \ldots, B}_{i}, L)$ is written as $\widetilde{W}_{i}(K, L)$ and is called the dual mixed quermassintegral of K and L.

The dual quermassintegral of star body K, defined as an integral by (see [6]): If $K \in \mathcal{S}^{n}$ and $0 \leq i<n$, then

$$
\begin{equation*}
\widetilde{W}_{i}(K)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i} d S(u) \tag{2.2}
\end{equation*}
$$

$2.2 p$-radial addition

For any $p \neq 0$, the p-radial addition $K \widetilde{+}_{p} L$ defined by (see [3])

$$
\begin{equation*}
\rho\left(K \widetilde{+}_{p} L, x\right)^{p}=\rho(K, x)^{p}+\rho(L, x)^{p} \tag{2.3}
\end{equation*}
$$

for $x \in \mathbb{R}^{n}$ and $K, L \in \mathcal{S}^{n}$. The following result follows immediately form (2.3).

$$
\frac{p}{n-i} \lim _{\varepsilon \rightarrow 0^{+}} \frac{\widetilde{W}_{i}\left(K \widetilde{+}_{p} \varepsilon \cdot L\right)-\widetilde{W}_{i}(L)}{\varepsilon}=\frac{1}{n} \int_{S^{n-1}} \rho(K . u)^{n-i-p} \rho(L . u)^{p} d S(u)
$$

Let $K, L \in \mathcal{S}^{n}, p \neq 0$ and $0 \leq i<n$, the p-dual mixed quermassintegral of star K and $L, \widetilde{W}_{p, i}(K, L)$, defined by

$$
\begin{equation*}
\widetilde{W}_{p, i}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i-p} \rho(L, u)^{p} d S(u) \tag{2.4}
\end{equation*}
$$

Obviously, when $p=1$, the p-dual mixed quermassintegral $\widetilde{W}_{p, i}(K, L)$ becomes the dual mixed quermassintegrals of star bodies K and $L \widetilde{W}_{i}(K, L)$. When $i=0$, the p-dual mixed quermassintegral $\widetilde{W}_{p, i}(K, L)$ becomes the well-known p-dual mixed volume $\widetilde{V}_{p}(K, L)$.

This integral representation (2.4), together with the Hölder inequality, immediately gives that the following Minkowski inequality for p-dual quermassintegras: If $K, L \in \mathcal{S}^{n}, 0<p \leq n$ and $0 \leq i<n$, then

$$
\begin{equation*}
\widetilde{W}_{p, i}(K, L)^{n-i} \leq \widetilde{W}_{i}(K)^{n-i-p} \widetilde{W}_{i}(L)^{p} \tag{2.5}
\end{equation*}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$.

It is easily seen that the p-dual mixed quermassintegral is linear with respect to the p-radial addition and together with inequality (2.5), show that the following Brunn-Minkowski inequality for p-radial addition: If $K, L \in \mathcal{S}^{n}$, $0 \leq i<n$ and $0<p \leq n$, then

$$
\begin{equation*}
\widetilde{W}_{i}\left(K \widetilde{+}_{p} L\right)^{p /(n-i)} \leq \widetilde{W}_{i}(K)^{p /(n-i)}+\widetilde{W}_{i}(L)^{p /(n-i)} \tag{2.6}
\end{equation*}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$.

The operation of the p-radial addition and L_{p}-dual Minkowski, BrunnMinkwski inequalities are the basic concept and inequalities in the L_{p}-dual Brunn-Minkowski theory. The latest information and important results of this theory can be referred to [8], [9], [10], [11] and [12] and the references therein.

$3 \quad L_{p}$-dual three mixed quermassintegrals with respect to p-radial addition

In order to define the L_{p}-dual three-mixed quermassintegral with respect to p-radial addition, we need the following lemmas.

Lemma 3.1 ([6]) If f_{0}, f_{1} and f_{2} are (strictly) positive continuous functions defined on S^{n-1} and α_{1}, α_{2} are positive constants the sum of whose reciprocals is unity, then

$$
\begin{align*}
\int_{S^{n-1}} f_{0}(u) f_{1}(u) f_{2}(u) d S(u) \leq & \left(\int_{S^{n-1}} f_{0}(u) f_{1}^{\alpha_{1}}(u) d S(u)\right)^{1 / \alpha_{1}} \\
& \left(\int_{S^{n-1}} f_{0}(u) f_{2}^{\alpha_{2}}(u) d S(u)\right)^{1 / \alpha_{2}} \tag{3.1}
\end{align*}
$$

with equality if and only if there exist positive constants λ_{1} and λ_{2} such that $\lambda_{1} f_{1}^{\alpha_{1}}=\lambda_{2} f_{2}^{\alpha_{2}}$ for all $u \in S^{n-1}$.

Lemma 3.2 Let $p \neq 0,0 \leq i<n$ and $\varepsilon>0$. If $K, L \in \mathcal{S}^{n}$, then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\rho\left(K \widetilde{+}_{p} \varepsilon \cdot L, u\right)^{n-i-1}-\rho(K, u)^{n-i-1}}{\varepsilon}=\frac{n-i-1}{p} \rho(K, u)^{n-i-p-1} \rho(L, u)^{p} \tag{3.2}
\end{equation*}
$$

Proof From (2.3) and in view of the L'Hôpital's rule, we obtain
$\lim _{\varepsilon \rightarrow 0^{+}} \frac{\rho\left(K \widetilde{+}_{p} \varepsilon \cdot L, u\right)^{n-i-1}-\rho(K, u)^{n-i-1}}{\varepsilon}$

$$
\begin{aligned}
& =\lim _{\varepsilon \rightarrow 0^{+}} \frac{\left(\rho(K, u)^{p}+\varepsilon \rho(L, u)^{p}\right)^{(n-i-1) / p}-\rho(K, u)^{n-i-1}}{\varepsilon} \\
& =\frac{n-i-1}{p} \lim _{\varepsilon \rightarrow 0^{+}}\left(\rho(K, u)^{p}+\varepsilon \rho(L, u)^{p}\right)^{(n-i-1-p) / p} \rho(L, u)^{p} \\
& =\frac{n-i-1}{p} \rho(K, u)^{n-i-1-p} \rho(L, u)^{p} .
\end{aligned}
$$

Lemma 3.3 Let $p \neq 0,0 \leq i<n$ and $\varepsilon>0$. If $K, L, Q \in \mathcal{S}^{n}$, then

$$
\begin{align*}
& \frac{p}{n-i-1} \lim _{\varepsilon \rightarrow 0^{+}} \frac{\widetilde{W}_{i}\left(K \widetilde{+}_{p} \varepsilon \cdot L, Q\right)-\widetilde{W}_{i}(K, Q)}{\varepsilon} \\
& =\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i-1-p} \rho(L, u)^{p} \rho(Q, u) d S(u) . \tag{3.3}
\end{align*}
$$

Proof This follows immediately from Lemma 3.2 and (2.2).
Definition 3.4 (The L_{p}-dual three-mixed quermassintegrals) Let $K, L \in$ $\mathcal{S}^{n}, 0 \leq i<n$ and $p \neq 0$, the L_{p}-dual three-mixed quermassintegrals of star bodies K, L and Q, denoted by $\widetilde{W}_{p, i}(K, L, Q)$, defined by

$$
\begin{equation*}
\widetilde{W}_{p, i}(K, L, Q)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i-1-p} \rho(L, u)^{p} \rho(Q, u) d S(u) \tag{3.4}
\end{equation*}
$$

When $K=L=Q$, the L_{p}-dual three-mixed quermassintegrals $\widetilde{W}_{p, i}(K, L, Q)$ becomes the usual dual quermassintegrals $\widetilde{W}_{i}(K)$. When $p=1$, the L_{p}-dual three-mixed quermassintegrals $\widetilde{W}_{p, i}(K, L, Q)$ is written as $\widetilde{W}_{i}(K, L, Q)$ and call it dual three-mixed quermassintegrals of K, L and Q. When $i=0$, the $L_{p^{-}}$ dual three-mixed quermassintegrals $\widetilde{W}_{p, i}(K, L, Q)$ becomes a new three-mixed volume, denoted by $\widetilde{V}_{p}(K, L, Q)$, and call it L_{p}-three dual mixed volume of K, L and Q. When $p=1, \widetilde{V}_{p}(K, L, Q)$ becomes a new three-dual mixed volume, denoted by $\widetilde{V}(K, L, Q)$, and call it three dual mixed volume of K, L and Q.

Lemma 3.5 If $K, L, Q \in \mathcal{S}^{n}, 0 \leq i<n$ and $0<p \leq n$, then

$$
\begin{equation*}
\widetilde{W}_{p, i}(K, L, Q)^{n-i-1} \leq \widetilde{W}_{i}(K, Q)^{n-i-p-1} \widetilde{W}_{i}(L, Q)^{p} \tag{3.5}
\end{equation*}
$$

with equality if and only if K and L are dilates.
The inequality is reversed for $p<0$ or $p<n$.
Proof This follows immediately from (3.4) and Lemma 3.1.
Theorem 3.6 (The Minkowski inequality for p-dual three mixed quermassintegrals) If $K, L, Q \in \mathcal{S}^{n}, 0 \leq i<n$ and $0<p \leq n$, then

$$
\begin{equation*}
\widetilde{W}_{p, i}(K, L, Q)^{n-i} \leq \widetilde{W}_{i}(K)^{n-i-p-1} \widetilde{W}_{i}(L)^{p} \widetilde{W}_{i}(Q) \tag{3.6}
\end{equation*}
$$

with equality if and only if K and L are dilates.
The inequality is reversed for $p<0$ or $p>n$.
Proof This follows immediately from Lemma 3.5 and inequality (2.5).
Corollary 3.7 (The Minkowski inequality for dual three-mixed quermassintegrals) If $K, L, Q \in \mathcal{S}^{n}$ and $0 \leq i<n$, then

$$
\begin{equation*}
\widetilde{W}_{i}(K, L, Q)^{n-i} \leq \widetilde{W}_{i}(K)^{n-i-2} \widetilde{W}_{i}(L) \widetilde{W}_{i}(Q) \tag{3.7}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.6 with $p=1$.
Corollary 3.8 (The L_{p}-Minkowski inequality for L_{p}-dual three mixed volumes) If $K, L, Q \in \mathcal{S}^{n}$, and $0<p \leq n$, then

$$
\begin{equation*}
\widetilde{V}_{p}(K, L, Q)^{n} \leq V(K)^{n-p-1} V(L)^{p} V(Q) \tag{3.8}
\end{equation*}
$$

with equality if and only if K and L are dilates. The inequality is reversed for $p<0$ or $p>n$.

Proof This follows immediately from Theorem 3.6 with $i=0$.
Corollary 3.9 (The Minkowski inequality for dual three mixed volumes) If $K, L, Q \in \mathcal{S}^{n}$, then

$$
\begin{equation*}
\widetilde{V}(K, L, Q)^{n} \leq V(K)^{n-2} V(L) V(Q), \tag{3.9}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.6 with $p=1$ and $i=0$.
Corollary 3.10 If $K, L, Q \in \mathfrak{S}^{n}, 0 \leq i<n$, then

$$
\begin{equation*}
\widetilde{W}_{n, i}(K, L, Q)^{n-i} \widetilde{W}_{i}(K)^{i+1} \leq \widetilde{W}_{i}(L)^{n} \widetilde{W}_{i}(Q) \tag{3.10}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.6 with $p=n$.
Theorem 3.11 (The L_{p}-Brunn-Minkowski inequality for the p-dual three mixed quermassintegrals) If $K, L, M, Q \in \mathcal{S}^{n}, 0 \leq i<n-1$ and $0<p \leq n$, then
$\widetilde{W}_{p, i}\left(Q, K \widetilde{+}_{p} L, M\right)$
$\leq \widetilde{W}_{i}(Q)^{(n-i-p-1) /(n-i)}\left(\widetilde{W}_{i}(K)^{p /(n-i)}+\widetilde{W}_{i}(L)^{p /(n-i)}\right) \widetilde{W}_{i}(M)^{1 /(n-i)}$,
with equality if and only if K and L are dilates.
The inequality is reversed for $p<0$ or $p>n$.
Proof From (2.3) and (3.4), it is easily seen that the p-dual three-mixed quermassintegral is linear with respect to the p-radial addition and together
with inequality (3.6) show that for $0<p \leq n$

$$
\begin{align*}
\widetilde{W}_{p, i}\left(Q, K \widetilde{+}_{p} L, M\right) & =\widetilde{W}_{p, i}(Q, K, M)+\widetilde{W}_{p, i}(Q, L, M) \\
& \leq \widetilde{W}_{i}(Q)^{(n-i-p-1) /(n-i)} \widetilde{W}_{i}(K)^{p /(n-i)} \widetilde{W}_{i}(M)^{1 /(n-i)} \\
& +\widetilde{W}_{i}(Q)^{(n-i-p-1) /(n-i)} \widetilde{W}_{i}(L)^{p /(n-i)} \widetilde{W}_{i}(M)^{1 /(n-i)} \\
& =\left(\widetilde{W}_{i}(K)^{p /(n-i)}+\widetilde{W}_{i}(L)^{p /(n-i)}\right) \\
& \times \widetilde{W}_{i}(Q)^{(n-i-p-1) /(n-i)} \widetilde{W}_{i}(M)^{1 /(n-i)} \tag{3.12}
\end{align*}
$$

From the equality condition of (3.6), the equality in (3.12) holds if and only if K and L are dilates of Q, this yields that the equality in (3.12) holds if and only if K and L are dilates.

Corollary 3.12 (The Brunn-Minkowski inequality for dual three-mixed quermassintegrals) If $K, L, M, Q \in \mathcal{S}^{n}$ and $0 \leq i<n-1$, then

$$
\begin{align*}
& \widetilde{W}_{i}(Q, K \widetilde{+} L, M) \leq \\
& \left(\widetilde{W}_{i}(K)^{1 /(n-i)}+\widetilde{W}_{i}(L)^{1 /(n-i)}\right) \widetilde{W}_{i}(Q)^{(n-i-2) /(n-i)} \widetilde{W}_{i}(M)^{1 /(n-i)} \tag{3.13}
\end{align*}
$$

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.11 with $p=1$.
Corollary 3.13 (The L_{p}-Brunn-Minkowski inequality for p-dual three mixed volumes) If $K, L, M, Q \in \mathfrak{S}^{n}$ and $0<p \leq n$, then

$$
\begin{equation*}
\widetilde{V}_{p}\left(Q, K \widetilde{+}_{p} L, M\right) \leq V(Q)^{(n-p-1) / n}\left(V(K)^{p / n}+V(L)^{p / n}\right) V(M)^{1 / n} \tag{3.14}
\end{equation*}
$$

with equality if and only if K and L are dilates.
The inequality is reversed for $p<0$ or $p>n$.
Proof This follows immediately from Theorem 3.11 with $i=0$.
Corollary 3.14 (The Brunn-Minkowski inequality for dual three mixed volumes) If $K, L, M, Q \in \mathfrak{S}^{n}$, then

$$
\begin{equation*}
\tilde{V}(Q, K \widetilde{+} L, M) \leq V(Q)^{(n-2) / n}\left(V(K)^{1 / n}+V(L)^{1 / n}\right) V(M)^{1 / n} \tag{3.15}
\end{equation*}
$$

with equality if and only if K and L are dilates.
Proof This follows immediately from Theorem 3.11 with $i=0$ and $p=1$.

4 Conclusions

It is well known that the classical concept of mixed quermassintegrals of convex bodies generally refers to the mixing of two convex bodies. By means
of variational technique, a new concept of mixed quermassintegrals of three convex bodies is proposed for the first time in L_{p}-space, which generalized the classical concept of two-mixed quermassintegrals of convex bodies. Further, the Minkowski inequality, and Brunn-Minkowki inequality for the threemixed quermassintegrals are established, respectively. Therefore, a series of Minkowski type, and Brunn-Minkowski type inequalities are derived.
Acknowledgements. The research of the first author was supported by the National Natural Science Foundation of China (grant numbers 11371334, 10971205).

References

[1] Y. D. Burago, V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin-New york, 1988.
[2] R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, New York, 1996.
[3] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39 (2002), 355-405.
[4] E. Grinberg, G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc,. 78 (1999), 77-115.
[5] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math., 71 (1988), 232-261.
[6] E. Lutwak, Dual mixed volumes, Pacific J. Math., 58 (1975), 531-538.
[7] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Second Edition, 2014.
[8] W. Wang, G. Leng, L_{p}-dual mixed quermassintegrals, Indian J. Pure Appl. Math., 36 (2005), 177-188.
[9] D. Ye, Dual Orlicz-Brunn-Minkowski theory: dual Orlicz L_{φ} affine and geominimal surface areas, J. Math. Anal. Appl., 443 (2016), 352-371.
[10] C.-J. Zhao, The dual logarithmic Aleksandrov-Fenchel inequality, Balkan J. Geom. Appl., 25 (2020), 157-169.
[11] C.-J. Zhao, Orlicz dual mixed volumes, Results Math., 68 (2015), 93-104.
[12] C.-J. Zhao, Orlicz dual affine quermassintegrals, Forum Mathematicum, 30 (4) (2018), 929-945.

[^0]: Key Words: p-radial addtion, Dual quermassintegral, Dual mixed quermassintegral, Minkowski inequality, Brunn-Minkowski inequality.

 2010 Mathematics Subject Classification: Primary 52A40; Secondary 46E30.
 Received: 06.08.2020
 Accepted: 31.08.2020

